Automatic Computing Methods for Special Functions. Part IV. Complex Error Function, Fresnel Integrals, and Other Related Functions
نویسندگان
چکیده
منابع مشابه
Computing Integrals of Highly Oscillatory Special Functions Using Complex Integration Methods and Gaussian Quadratures
An account on computation of integrals of highly oscillatory functions based on the so-called complex integration methods is presented. Beside the basic idea of this approach some applications in computation of Fourier and Bessel transformations are given. Also, Gaussian quadrature formulas with a modified Hermite weight are considered, including some numerical examples.
متن کاملAn error analysis of two related quadrature methods for computing zeros of analytic functions, Part II
We consider the quadrature method developed by Kravanja, Sakurai and Van Barel (BIT 39 (1999), no. 4, 646–682) for computing all the zeros of an analytic function that lie inside the unit circle. A new perturbation result for generalized eigenvalue problems allows us to obtain a detailed upper bound for the error between the zeros and their approximations. To the best of our knowledge, it is th...
متن کاملOn High Precision Methods for Computing Integrals Involving Bessel Functions
The technique of Bakhvalov and Vasil'eva for evaluating Fourier integrals is generalized to integrals involving exponential and Bessel functions.
متن کاملOn High Precision Methods for Computing Integrals of Oscillatory Functions*
A short account of the most important methods for the evaluation of integrals of oscillatory functions and an unified approach for such a purpose are given.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Research of the National Bureau of Standards
سال: 1981
ISSN: 0160-1741
DOI: 10.6028/jres.086.031